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CHAPTER

ONE

INTRODUCTION

Deep neural networks (DNNs) have been the focus of much research and development in the last few years as the uptake
of artificial intelligence in a number of application areas has grown rapidly. Although a lot of research has been carried
out in developing new deep learning models and techniques, making deep learning models computationally affordable
and accessible is still a challenge.

One way to accelerate computation in a deep neural network is to use less precision for computation. This is called
quantization (Hubara et al., 2018). In deep learning, quantization is a technique to reduce memory consumption as well
as the computation time of deep neural networks. In contrast, floating-point operations are slower and more costly (in
terms of power consumption and the required area in a silicon chip) compared to fixed-point and integer operations. For
instance, in a 45nm process, 32-bit integer multiplication and addition take 3.1 pJ (pico joules) and 0.1pJ, respectively
(Horowitz, 2014). However, to do the same operation with floating-point values, it requires 3.7 pJ for multiplication
and 0.9 pj for addition. On the other hand, using integer operands make the computation process faster. As an example
in Intel Core i7 4770 running at 3.4GHz multiplication is more than 3 times faster for fixed-point data types compared
to floating-point datatypes (LIMARE, LIMARE).

To benefit from quantization in a neural network, one must use a hardware that supports low precision computation. At
the time of writing this documentation, there are no commercially available general processors (CPU or GPU) that can
efficiently store and load sub-8-bit parameters of a neural network. Also, the general processors are not equipped with
customized hardware to perform arbitrary precision computation. Hence, to fully benefit from quantization, one should
consider designing custom ASICS. This document provides technical details for BARVINN: a Barrel RISC-V Neural
Network Accelerator Engine. The main purpose of designing BARVINN was to fill the need for arbitrary precision
computation in neural networks.

This documentation tries to help users and developers use BARVINN in their projects or improve it depending on their
custom computation needs.
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CHAPTER

TWO

DESIGN

2.1 BARVINN

BARVINN is a Barrel RISC-V Neural Network Accelerator. The main purpose of designing BARVINN is to fill the
need for arbitrary precision neural network acceleration. The overall architecture of BARVINN is illustrated below.
BARVINN is implemented in an FPGA. Fig. 2.1 illustrates the overall system design for BARVINN. It is consist of the
following components:

• Array of Matrix Vector Units

• RISC-V Controller Core

• Host Machine

Fig. 2.1: BARVINN overall architecture.

In the following sections, we will review each part in details.
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2.2 Matrix Vector Unit (MVU) Array

In the base configuration, BARVINN uses 8 MVUs. At every clock cycle, each MVU is capable of performing a binary
matrix-vector product of the following size:

• Input Vector of 1 x 64 with 1 bit precision

• Weight Matrix of 64 x 64 with 1 bit precision

Each MVU has a local memory to store activation and weights. The MVUs are connected through a crossbar. The
crossbar allows MVUs to send part of their local memory (activations) among themselves. This allows MVUs to work
on different jobs with different configurations or to work together to compute a single task.

Fig. 2.2: This figure illustrates an MVU block diagram.

Fig. 2.2 illustrates the block diagram of an MVU. Each MVU is consist of a Matrix Vector Product unit (MVP),
Collision Detection Read Unit (CDRU), Collision Detection Write Unit (CDWU), activation RAM, weight RAM and
a set of machine learning specific blocks such as quantizers, scaler units and pooling unit that can be switched on or
off (technically, data will pass through all of these blocks and the user should provide proper configuration to bypass
the functionality. For instance for scaler unit, if there is no need to scale the output, the user should write 1s in scaler
RAMs) depending on the job configuration. As it can be seen in Fig. 2.2, at each clock cycle, an MVU word (64 bits)
is read from the activation RAM. At the same time, a long word of 4096 bits (64 by 64 ) is read from weight RAM.
This is then fed into MVP unit which can perform one binary matrix-vector product each clock cycle. Depending on
the precision configuration register (take a look at MVU_CSR_REG_TABLE for detailed register configuration for each
MVU), multiple words will be read from weight and data memory to perform bit-serial multiplication.

Fig. 2.3 illustrates bit-serial operation in MVU. As it can be seen, an MVU data word of size 64 bit is read from data
RAM. This will be fed into 64 bit-serial multiplication blocks. Each of these blocks performs a dot product between
the two vectors. Fig. 2.3 shows only one bit-slice operation in the MVU, however, in reality, there are 64 modules
that perform the same task on input data but with different weight vectors. For more information on MVU bit-serial
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operation, please refer to “Bit-Slicing FPGA Accelerator for Quantized Neural Networks” by O. Bilaniu et al.

As we mentioned before, the MVU is capable of performing computation with different bit precision. The way we
achieve this task is by storing values in MSB transposed format in memory. This format of saving data in memory
allows MVU to read-only as many words as the operand precision specifies. Since all the computations are happening
in this format, the user should not worry about memory layout except when it wants to read results or write inputs (such
as input image) into MVU RAMs. To solve this issue, there is a data transposer module that transposes the data to the
correct format. Data transposer’s job is to write input data (that is stored in a processor RAM in linear format) into
MVU RAM in a transposed format. The input word can be packed with 2, 4, 8 or 16 bits of data. Given the input data
precision (prec) the transposer will unpack, transpose and store them in the correct format. Once the MVU word is
prepared, data tranposer will go into BUSY state in which it will ignore any incoming new input data. At this point, the
transposed data will be written into MVU word. Once complete, it will go back into IDLE state and it will wait for a
new posedge on start signal to start the process all over again.

2.2.1 MVU Job Configuration

MVUs are programmed to perform a single job. A job is started by the controller by raising the start signal. Once the
job is finished, the MVU will generate an interrupt, informing the controller that the requested job is finished and the
results are ready to be sent back to the host or to other MVUs. Once MVU is busy with a job, the busy signal is raised.
During this time, MVU can be programmed for the next job and raising the start signal will not initiate any new job.

Fig. 2.5 shows the timing diagram for sending a job to MVU. For sake of breavity, all config parameters are represented
by configs signal. In the following sections, we will review what parameters can be set in the MVU.

2.2.2 Feature map memory access

Fig. 2.6 illustrates the memory layout for feature maps. MVU expects a NHWC layout for feature map features. Each
element should be stored in a MSB transposed format. Fig. 2.6 shows that each word is 64 bit. As a result, accessing
memory at location 0 will return a 64-bit word, where each bit, belongs to the MSB bit of the first 64 channels of the
feature map. Elements of these 64 channels are concatenated (in MSB transposed format) together to form a channel
block. The next memory address i.e 1 will return the MSB-1 bits of the first 64 channels. This pattern continues until
we reach the configured input precision i.e. iprecision.

Elements of each channel are written into feature map memory with an offset of iprecision. In case there are more than
64 channels in the feature map, we will store the first 64 channels in the first block, the second 64 channels into the
second block and so on. As an example, an input tensor of [N=1, H=8, W=8, C=256] with 2-bit precision, will have
4 channel blocks, each block will have 64 rows of 2 by 64-bit elements.

2.2.3 Weight Memory Access

Weight memory layout is very similar to feature map memory layout. Fig. 2.7 illustrates the weight memory layout.
Same as Fig. 2.6, MVU expects a NHWC layout for weight tensor. However, in weight memory, we have input and
output channels. By default, weight memory words are 4096 bit long. Allowing to concatenate a single MSB bit of
64x64 channels per row of weight memory. In deep neural network models, weight tensors are usually consist of a set
of filters. The weight memory layout in MVU allows concatenating 64 input channels into 64 set of filters i.e. output
channels. Like feature map memory layout, in case we have more than 64 input channels, we will write them into
the next input channel blocks. Instead of iprecision, here we use wprecision to specify how many bits are required to
represent any weight element.

Like feature map memory layout, channel blocks are grouped together to form width columns and then height rows.
Finally, we can group multiple height rows together to form output channels i.e. filters.

2.2. Matrix Vector Unit (MVU) Array 7
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Fig. 2.3: Bit serial operation in MVU.
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Fig. 2.4: Data transposer modlue, this module will pack vectors of size XLEN in MSB first transposed format.

Fig. 2.5: Timing diagram for configuring an MVU job.

2.2. Matrix Vector Unit (MVU) Array 9
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Fig. 2.6: Input feature map memory layout.
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Fig. 2.7: Weight memory layout.

2.2. Matrix Vector Unit (MVU) Array 11
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2.2.4 Jump Schedules

The memory layout described in previous sections allows MVU to efficiently compute matrix multiplication between
input vectors and the weight matrices. However, a convolutional neural network, many matrix multiplies should be
performed. One of the most common ways to perform convolution is to slide the weight tensor over input. Fig. 2.8
illustrates this operation.

Fig. 2.8: Sliding window operation to perform Convolution.

As you can see in Fig. 2.8, if we just slide the weight tensor over input, not all dot products are valid. Luckily, for a
given stride, padding and weight shape, we can pre-compute the pattern of memory accesses by the MVU to compute an
operation such as GEMV or convolution. Each MVU includes address generators that can be programmed to implement
a series of nested loops that can be used to move across the input data and weight tensors. Address generators have a
set of length parameters that set the bounds of each nested loop, and a set of associated address jump (jX) parameters
that are used to compute the next memory address to move to in a given loop. This is illustrated in the following
pseudocode:

while (1) {
for (i1 = length1; i1 > 0; i1--)
{
for (i2 = length2; i2 > 0; i2--)
{
for (i3 = length3; i3 > 0; i3--)
{
for (i4 = length4; i4 > 0; i4--)
{
addr_out += j4;

}
addr_out += j3;

}
addr_out += j2;

}
addr_out += j1;

}
addr_out += j0;

}
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For a 2D convolution operation, Fig. 2.9 and Fig. 2.10 illustrates what each jump configuration is:

For inputs we have the following configurable jump variables:

• j3: jump over precision length for input data (i.e. set to iprec).

• j2: Specifies if we have reached window width, if so, move to the next row in the window.

• j1: Specifies if we have reached window height and width, if so, move back to window start for next precision
combo or next filter set (i.e. for same output (x,y), start computing next output channel block).

• j0: Specifies if we have finished all filter sets in the window and done output (x,y). Slide window by horizontal
stride. Start output (x+1, y). Note that the diagram shows a horizontal stride of 1.

• j4: not applicable.

• j3: jump over precison length for weights (i.e. set to wprecision).

• j2: Specifies if we have reached window width and height, if so, move back to filter start for next precision combo.

• j1: Specifies if we have finished all bit combos for the current filter set and channel block for output (x,y) and if
so, move to the next filter set and compute the next channel block for output (x,y).

• j0: Specifies if we have finished all filter sets and channel blocks for output (x,y) and if so, move back to the start
of the first filter set for the next window and output (x+1, y).

• j4: not applicable.

• 16-bit fixed point values

• Standard bit ordering, i.e. non-bit-sliced, little-endian

• Each channel block is 64 channels

• n channel blocks in a layer; would be same as Fc in conv or bn following conv

• 32-bit fixed point values

• Only lower 27-bits are used in addition (due to FPGA DSP structure)

• Standard bit ordering (i.e. non-bit-sliced), little-endian

• Each channel block is 64 channels

• n channel blocks in a layer; would be same as Fc in conv or bn following conv

In general, each MVU has 44 configurable registers that can be used in the software. Section Control Status Registers
(MVU) provides details of each register.

2.3 PITO: A Barrel RISC-V Processor

To make use of MVUs for neural networks, some form of the control unit is required. It is not possible to foresee
and provide for all possible neural networks that may crop up in the literature in the future. Therefore, the high-level
sequencing of tensor operations should be provided for in software, possibly assisted by glue logic to help drive the
MVUs’ control signals.

PITO is a Barrel RISC-V processor, designed to control the 8 MVUs in Bilaniuk et al. (2019) using separate but
communicating hardware threads (harts) that each manages their respective MVUs. Neural network layers can then be
executed either in parallel or in a pipelined fashion depending on whether the neural network software is compiled to
maximize throughput or minimize latency. This design also allows MVUs to complete tensor operations independently
of each other. However, the drawback is that, at least nominally, this requires 8 microprocessors to execute the 8
programs, putting serious pressure on the remaining logic of the host FPGA. We instead amortized the fixed costs of
the processor by adopting an old idea: the barrel processor. By making the barrel processor 8-way threaded, we may

2.3. PITO: A Barrel RISC-V Processor 13
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Fig. 2.9: Input feature jump schedule.
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Fig. 2.10: Weight jump schedule.
2.3. PITO: A Barrel RISC-V Processor 15
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Fig. 2.11: Quantizer/BN weights

assign one thread to control each of the MVUs, while amortizing the fixed costs of each microprocessor over the 8
threads. Because every thread comes up for execution only every 8 clock cycles, up to 8 pipeline stages including
instruction fetch, decode, execution and data read & writes can be completely hidden. Branch prediction units are
also made unnecessary. Because even modest tensor operations can require hundreds of matrix-vector products (and
therefore clock cycles) to execute on an MVU, the barrel processor has the opportunity to fully turn over dozens of
times in the interim, allowing each thread to issue the next command to its MVU in a few instructions.

A barrel processor is a form of a fine-grain multithreading processor that exploits thread-level parallelism by switching
between different threads on each clock cycle (Hennessey and Patterson,2011). The aim is to maximize the overall
utilization of the processor’s resources, and instruction throughput. This is similar to the technique of simultaneous
multi-threading (SMT) that is used in modern superscalar processors. However, unlike SMT superscalar processors,
barrel processors do not issue more than one instruction per clock cycle. Instead, a single execution pipeline is shared
by all threads. Fig. 2.13 illustrates the data path of PITO, a 5 stage 8 hart, barrel processor compatible with RV32I
RISC-V ISA.

We adopted a Harvard architecture and divided the instruction and data cache. In our design, we used 32KB BRAM
for each cache. This gives a 1K word space to store data and instructions to control each MVU. The processor is an
in-order CPU and instructions are executed following compilation order and without any further scheduling. However,
a hart scheduler is needed to give access to the required resources for the hart at each stage. In the fetch stage, each hart
needs to fetch instructions from the instruction cache. As explained earlier, we used 32KB of instruction cache which
is shared between all harts. However, the program counter (PC) for each hart is different. To keep track of this, we used
8 registers for PCs and the hart scheduler indicates which register should be accessed at any given time. In the Decode
stage, the fetched instruction needs to be decoded, and source registers (rs1 and rs2) or an immediate (imm) operand
needs to be loaded. Each hart has its own register file and in the Decode stage, the hart scheduler gives access to the
scheduled hart’s register file.

The hart scheduler itself uses a strict round-robin algorithm. No preemption or priority is implemented and every hart

16 Chapter 2. Design
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Fig. 2.12: BN/linear biases

Fig. 2.13: PITO Datapath, a 5 stage 8 hart, barrel processor.

2.3. PITO: A Barrel RISC-V Processor 17
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Fig. 2.14: This figure shows 8 harts running in the barrel processor that has 5-stage pipeline. The figure on the right
shows every 8 clock cycles, the program counter of the associated hart increments, which allows this pipeline to be
implemented without any data or control hazard circuitry.

is given a fixed amount of time slots for execution. Figure 4.3a shows how harts are scheduled for execution in our
design. Considering the execution for Hart[0], it takes 5 clock cycles for an instruction to be completed. After the 5th
clock tick, no more processing associated with Hart[0] is performed. The next three slots are given to Hart[5], Hart[6]
and Hart[7]. Thus each hart executes an instruction every 8th cycle of the main clock. Hence the CPI of 8. From the
perspective of the main CPU, the throughput is one instruction per clock cycle. From the perspective of each hart, we
are running at an 8th of the main clock speed with a CPI of 1.

PITO is compatible with RV32I RISC-V ISA. In fact, PITO passes all the RISC-V tests, confirming that it is compliant
with the RV32I ISA. In addition to base CSRs (refer to Control Status Registers (RISC-V) for details) and to specialize
PITO for our accelerator, we have added 44 MVU specific CSRs. In Section Examples, we have provided example
codes to program these CSRs to submit a job to MVU.

2.3.1 Interrupts

In BARVINN, MVUs can send interrupts to their associated hart. These interrupts are added to RISC-V custom
interrupts mie field. To reduce complexity, there are no supports for nested interrupts or interrupt priorities. However,
we followed RISC-V’s interrupt operation flow. Fig. 2.15 illustrates servicing interrupt flow in software and hardware.
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Fig. 2.15: Interrupt service routine in hardware and software

2.3. PITO: A Barrel RISC-V Processor 19
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2.3.2 Control Status Registers (RISC-V)

ADRRCSR RO/RW Description
0x301 misa RO A constant, but MSB = 0 for open-source implementation..
0xF11 mven-

dorid
RO/Zero Identification. Can be zero.

0xF12 marchid RO/Zero Identification. Can be zero.
0xF13 mimpid RO/Zero Identification. Can be zero.
0xF14 mhar-

tid
RO, cycle
counter % 8

Shared with cycle counter.

0x300 msta-
tus

RW, per-
thread

Critically-important bits like Global Interrupt Enables

0x305 mtvec RO or RW if
wanted

Interrupt vector, or interrupt vector table base address. Register is RW if we want
to be able to choose between these two modes, or change the address.

0x344 mip RO, per-
thread

Pending interrupts bitfield

0x304 mie RW, per-
thread

Enabled interrupts bitfield

0xB00mcycle RW per-
thread

Cycles counter, low 32 bits

0xB80mcy-
cleh

RW per-
thread

Cycles counter, high 32 bits

0xB02min-
stret

RW per-
thread

Instructions retired counter, low 32 bits

0xB82min-
streth

RW per-
thread

Instructions retired counter, high 32 bits

0xxxx mhpm* RO/Zero High-performance counter control registers, not supported
0xxxx mcountin-

hibit
RO/Zero High-performance counter inhibit, not supported

0x340 mscratch RW, per-
thread

Scratch register, necessary to support interrupts

0x341 mepc RW, per-
thread

Exception program counter

0x342 mcause RW, per-
thread

Interrupt cause

0x343 mtval RW, per-
thread

Stores either faulting address, or contains illegal instruction

2.3.3 Control Status Registers (MVU)

CSR RO/RW Description
mvuwbaseptr RW Base address for weight memory
mvuibaseptr RW Base address for input memory
mvusbaseptr RW Base address for scaler memory (6-bit)
mvubbaseptr RW Base address for bias memory (6-bit)
mvuobaseptr RW Output base address:

0-23: address
31-24: destination MVUs (bit 24 -> MVU 0)

mvuwjump[0-4] RW Weight address jumps in loops 0-4
continues on next page
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Table 2.1 – continued from previous page
CSR RO/RW Description
mvuijump[0-4] RW Input data address jumps in loops 0-4
mvusjump[0-1] RW Scaler memory address jumps (6-bit)
mvubjump[0-1] RW Bias memory address jumps (6-bit)
mvuojump[0-4] RW Output data address jumps in loops 0-4
mvuwlength[1-4] RW Weight length in loops 1-4
mvuilength[1-4] RW Input data length in loops 1-4
mvuslength[1] RW Scaler tensor lengths(15-bit)
mvublength[1] RW Bias tensor lengths (15-bit)
mvuolength[1-4] RW Output data length in loops 1-4
mvuprecision RW Precision in bits for all tensors:

0-5: weights precision
6-11: input data precision
12-17: output data precision
24: weights signed (0: unsigned, 1: signed)
25: input data signed (0: unsigned, 1: signed)

mvustatus RO Status of MVU:
0: busy
1: done

mvucommand RW Kick to send command:
30-31: MulMode (00:{0,0} 01:{0,+1} 10:{-1,+1} 11:{0, -1})
29: MaxPool enable
0-28: Clock cycle countdown

mvuquant RW MVU Quantization Configs:
6-11: MSB index position
12-31: reserved (possibly for activation params)

mvuscaler RW 0-15: fixed point operand for multiplicative scaling
mvuconfig1 RW MVU General Configurations

0-7: Shift/accumulator load on jump select (only 0-4 valid)
8-16: Pool/Activation clear on jump select (only 0-4 valid)

2.3.4 mvuwbaseptr

2.3.5 mvuibaseptr

2.3.6 mvusbaseptr

2.3. PITO: A Barrel RISC-V Processor 21
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2.3.7 mvubbaseptr

2.3.8 mvuobaseptr

mvuobaseptr output address, results of each operation will be written into this address. Destination MVU, results can
be sent to other MVUs by setting the appropriate MVU (0 to7 ) field. The result can be broadcasted to any number of
MVUs in the system.

2.3.9 mvuwjump

mvuwjump is the weight address jumps in loops 0-4. Hence, there are 5 registers all start with mvuwjump_ but then to
access a specific loop, you need to append the loop number at the end (refer to Jump Schedules section for details on
loop count). For instance, for loop1 one can use mvuwjump_1.

2.3.10 mvuijump

Same as mvuwjump, there are 5 loops that can be used to address input data. These loops can be accessed as mvuijump_0
to mvuijump_4.

2.3.11 mvusjump

For scaler memory, we have only two jumps and they can be accessed as mvusjump_0 and mvusjump_1.

2.3.12 mvubjump

For bias memory, we have only two jumps and they can be accessed as mvubjump_0 and mvubjump_1.

2.3.13 mvuojump

Same as mvuwjump, there are 5 loops that can be used to address output memory. These loops can be accessed as
mvuojump_0 to mvuojump_4.

2.3.14 mvuwlength

There are 4 registers to specify weight length loops and can be accessed as mvuwlength_1 to mvuwlength_4. Note,
mvuwlength_0 is intentionally not used.

22 Chapter 2. Design
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2.3.15 mvuilength

There are 4 registers to specify input data length loops and can be accessed as mvuilength_1 to mvuilength_4. Note,
mvuilength_0 is intentionally not used.

2.3.16 mvuslength

There is only one register to specify scaler tensor length and it can be accessed as mvuslength_1. Note, mvuslength_0
is intentionally not used.

2.3.17 mvublength

There is only one register to specify scaler tensor length and it can be accessed as mvublength_1. Note, mvublength_0
is intentionally not used.

2.3.18 mvuolength

There are 4 registers to specify input data length loops and can be accessed as mvuolength_1 to mvuolength_4. Note,
mvuolength_0 is intentionally not used.

2.3.19 mvuprecision

weight precision, input precision and output precision indicates the computation precision accordingly. isign and wsign
can be used to set if the data is signed 1 or not 0.

2.3.20 mvustatus

Specifies MVU status which is either busy (0) or done (1).

2.3.21 mvucommand

Setting any value to this register will send a kick start signal to MVU to start the configured job. The register fields are
described in Control Status Registers (MVU).

2.3.22 mvuquant

In the case we need to quantize results, msbidx can be used. This field indicates that where does the msb position start.

2.3. PITO: A Barrel RISC-V Processor 23
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2.3.23 mvuscaler

A fixed point multiplier value that can be used to rescale a quantized value.

2.3.24 mvuconfig1
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CHAPTER

THREE

VERIFICATION

To verify the functionality of our design, we have created a verification environment. We used Vivado’s support for
Systemverilog. Although UVM verification was a much better choice to start with, however, when we started the
project, there was no support for UVM in Vivado. Currently, Vivado 2020 supports UVM based verification but our
verification is still based on a simple class-based verification. In the following sections, we provide an overview of
what has been implemented. Also, we will review how new tests can be added and how to run simulations.

3.1 Verification Environement

Fig. 3.1 illustrates the overall architecture of our verification environment. For simplicity, we will review the verification
environment in PITO. However, both MVU and BARVINN follow the same verification structure. There are four main
verification components in our verification design:

• Testbench Monitor

• Testbench Predictor

• Testbench Base

• Testbench Top

3.2 Testbench Monitor

In our design, a Testbench Monitor is a testbench module that monitors transactions inside the DUT. In PITO the
Testbench Monitor module is named pito_monitor. An important task of pito_monitor is to sync with the DUT. This
is a crucial step since our predictor module and DUT must be in the exact same state to allow the predictor module
to correctly predict the next state. pito_monitor syncs to DUT by checking if the first instruction in the firmware is
correctly executed by the DUT. Once the monitor found such an instruction, it will move to the sync state. Otherwise,
it will wait for a predetermined wait period NUM_WAIT_CYCELS until it times out and halts the simulation.

Once the sync period is done, pito_monitor samples data for the predictor module. In PITO verification environment,
pito_monitor class instantiates a RV32IPredictor module and uses hdl path and pito_interface to monitor transactions
within the DUT. On every clock cycle, pito_monitor samples the DUT’s CSR, register file and memory as well as the
executed instruction. It then passes all these samples to the RV32IPredictor module.
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Fig. 3.1: Verification Environment for PITO, showcasing how RISC-V tests are verified in our design.
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3.3 Testbench Predictor

A testbench predictor module is responsible to predict the state of each hardware block in the DUT. There are many
industry proven predictors. As an example, Spike is a RISC-V simulator that provides functional model for different
RISC-V ISA. It can also be integrated with Systemverilog through SyetemVerilog DPI. However, we decided to write
our own functional model of PITO since Spike does not support a Barrel design. As an example, in PITO, there is no
logic to prevent data or control hazards. On the other hand, although Spike supports multiple harts, a normal data path
with data and control hazard has been implemented. Hence, Spike in its default format is unable to correctly predict
the DUT behavior.

RV32IPredictor module is a functional model of PITO written in SystemVerilog. It supports all base RV32I instruc-
tions. For every instruction that is executed in the DUT, our predictor can predict the expected results. RV32IPredictor
is designed to support as many harts as is required. It also contains the base RISC-V CSRs plus the custom CSRs that
we added for configuring the MVU.

The RV32IPredictor module has no direct connection to the DUT. All the transactions are sampled by the monitor
module and then they are provided to the predictor module. Hence, as mentioned before, it is crucial for the monitor
module to sync correctly with the DUT. Once the predictor module receives a sample from the monitor, it will process
the instruction and it will update the test_stat variable to be used by the testbench.

3.4 Testbench Base

Testbench base is a SystemVerilog class that contains testbench predictor and testbench monitor class. Figure Fig.
3.2 illustrates the class structure for our verification environment. As it can be seen, the testbench base class
(pito_testbench_base in PITO verification environment) should be used as the base class for all other test classes.
Each test has three phases, testbench setup phase, testbench run phase and testbench report phase. All these phases are
virtual tasks that allow the user to override them.

Fig. 3.2: Class structure of PITO verification

In the testbench setup phase, we usually put the DUT into reset mode and we will provide reset configurations. At
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this stage, we should load any firmware into the instruction ram and load data ram with the data generated by the
compiler. We should also initialize the register files and prepare the start sequence for the processor. However, this can
be overwritten by the test in case there are other things that need to be added. In the testbench run phase, we usually
run the firmware on the DUT. However, before that, we should kick start the monitor to sync with the DUT. Finally, in
the report phase, we report the result of the test. The testbench base class has a test_stat variable that is passed to the
monitor class. In the report phase, we will use this data structure to report the result of the test.

3.5 Testbench Top

Unlike the previous testbench components, the testbench top is a SystemVerilog module. As it can be seen in Fig. 3.1,
the testbench top module instantiate all the other components (DUT, tests, interface). It also connects the DUT to the
testbench through the interface. Another important task of this module is to call the three phase of the testbench that
was described earlier. The testbench top module also provides the clock signal for the entire system.

3.6 Running a Test in PITO Verification Environment

Our design supports FuseSoC. In order to run any of the tests provided, you will first need to make make sure that the
Vivado is available in the system. We currently support Vivado 2019.1:

source /opt/Xilinx/Vivado/2019.1/settings64.sh

Then, make sure you have fusesoc installed:

python3 -m pip install fusesoc

Then add pito to your fusesoc libraries:

git clone https://github.com/hossein1387/pito_riscv.git
cd pito_riscv
fusesoc library add pito .

Then run simulation (No GUI):

fusesoc run --target=sim pito

For synthesis:

fusesoc run --target=synth pito

To open sim in GUI mode:

cd build/pito_0/sim-vivado/
make run-gui

And for synthesis:

cd build/pito_0/synth-vivado/
make build-gui

This should open the project for you. Make sure you have run simulation or synthesis at least once, otherwise FuseSoC
would not create a project file for you.
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FOUR

SOFTWARE STACK

As mentioned earlier, PITO is compliant with RV32I RISC-V ISA. Hence, all the toolchains developed for RV32I
can be used. However, there is still a huge gap for running a high-level neural network model described in Pytorch,
Tensorflow, or ONNX on a Neural Network accelerator such as BARVINN. Fig. 4.1 shows how we try to close this
gap.

Fig. 4.1: Software stack used in BARVINN.
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Given a model trained in Pytorch, Tensorflow or any other machine learning framework, we first need to convert it to an
ONNX model. ONNX is an open format for representing machine learning models. Using ONNX models allows us to
write use a single code generator module for all types of machine learning models described in any machine learning
framework.

Before using the code generator, we should first quantize the model. Currently, model quantization is a hot research
topic. The main goal of quantization is to reduce calculation precision while maintaining accuracy. Quantization can be
applied to a model after or while training. Quantization after training (post-training quantization) can be done statically
or dynamically. In post-training static quantization, weights are quantized ahead of time and during a calibration process
on the validation set, a scale and bias is computed for the activations.

In post-training dynamic quantization, much like post-training static quantization, the weights are quantized ahead of
time but the activations are dynamically quantized at inference. Dynamic quantization is useful for models where
model execution time is dominated by the time it takes to load weights for the model e.g LSTM.

Quantization can also be learned by the network. In quantization-aware training, the quantization parameters are learned
while other parameters in the network are learned.

There are many quantization methods proposed in the literature. However, although they are very different in training, at
inference, these methods usually use a scaling factor and clip function to quantize the value. As an example, in Learned
Step Size Quantization SK Esser, et.al (2020), the authors provided the following Fig. 4.2 computational graph:

Fig. 4.2: Low precision computation in LSQ, this image was taken from LSQ paper SK Esser, et.al (2020).

As it can be seen, at training time, S_w and S_x are used to first quantize both activation and weights. These quantized
values are fed into a low precision matrix multiply block. Finally, S_w and S_x are used to rescale the result. However,
at inference time, the weight quantization can be performed offline and only activation quantization is necessary. In
BARVINN, we added support for such quantization methods. There are scaling factor rams in each MVU that can be
programmed to hold the scaling factor.

Warning: Currently, we only support plain CNN models without any residual connections. You can refer to
“Residual Distillation: Towards Portable Deep Neural Networks without Shortcuts” NeurIPS 2020 paper to learn
how to train a resnet-like model and convert it into a plain CNN model.
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4.1 Code Generator

Once model training and quantization are done, we can export the model to ONNX format. We have provided a python
library to take the ONNX model and generate MVU configuration code. There are two components to map an ONNX
model to configuration code for MVU. We first need to parse an ONNX model and depending on the operation, break
it down into matrix multiply operations. Then we need to generate configuration code for each matrix multiply. Since
MVU expects the weights to be in the transposed MSB first format, we then need to reformat the weights. In BARVINN,
we have provided a python library to help users map their ONNX model into a format that can be used to be executed
on BARVINN. One then can use the following code to map and ONNX model into configuration code:

1 import logging
2 import argparse
3 from OnnxParser import OnnxParser
4 from Generator import Generator
5 import utils
6
7 def parse_args():
8 parser = argparse.ArgumentParser()
9 parser.add_argument('-x', '--onnx_model', help='input onnx model', required=True)
10 parser.add_argument('--aprec', help='Activation precision', required=False,␣
→˓default=8, type=int)
11 parser.add_argument('--wprec', help='Weight precision', required=False, default=8,
→˓ type=int)
12 parser.add_argument('--oprec', help='Output precision', required=False, default=8,
→˓ type=int)
13 parser.add_argument('--input_shape', help='input shape for ', nargs='*',␣
→˓required=False, default=[3,32,32], type=int)
14 args = parser.parse_args()
15 return vars(args)
16
17 if __name__ == '__main__':
18 args = parse_args()
19 model_path = args['onnx_model']
20 precision = [args['aprec'], args['wprec'], args['oprec']]
21 input_shape = args['input_shape']
22 model = OnnxParser(model_path)
23
24 # model.print_onnx_graph()
25 # model.print_onnx_model()
26 if len(args['input_shape'])>3:
27 print("Expecting an input array of shape: [channels, height, lenghth]")
28 import sys
29 sys.exit()
30 generator = Generator(model, precision, input_shape)
31 generator.generate_mvu_configs()
32 generator.export_weigths()
33 utils.gen_test_vecs(model_path, precision, input_shape)

As an example, we have used the quantized distilled_resnet18.onnx (available in BARVINN repo) with the sample code
above to generate MVU configuration code. The following is the output of the code generator:

Generated MVU configuration:
+-------------+-----------+-------------------+------------------------+-----------------

(continues on next page)
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→˓-+------------------------+-----------+-----------------------+
| iShape | fShape | ilength | ijump | wlength ␣
→˓ | wjump | countdown | total layer countdown |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [1, 32, 32] | [1, 3, 3] | [0, 3, 2, 2, 0] | [-132, -132, 60, 2, 0] | [0, 0, 3, 8, 0]␣
→˓ | [-16, 2, -16, 2, 0] | 1080 | 36720 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [1, 32, 32] | [1, 3, 3] | [0, 3, 2, 2, 0] | [-132, -132, 60, 2, 0] | [0, 0, 3, 8, 0]␣
→˓ | [-16, 2, -16, 2, 0] | 1080 | 36720 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [1, 32, 32] | [1, 3, 3] | [0, 3, 2, 2, 0] | [-132, -132, 60, 2, 0] | [0, 0, 3, 8, 0]␣
→˓ | [-16, 2, -16, 2, 0] | 1080 | 36720 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [1, 32, 32] | [1, 3, 3] | [0, 3, 2, 2, 0] | [-132, -132, 60, 2, 0] | [0, 0, 3, 8, 0]␣
→˓ | [-16, 2, -16, 2, 0] | 1080 | 36720 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [1, 32, 32] | [1, 3, 3] | [0, 3, 2, 2, 0] | [-132, -132, 60, 2, 0] | [0, 0, 3, 8, 0]␣
→˓ | [-16, 2, -16, 2, 0] | 1080 | 36720 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [1, 32, 32] | [2, 3, 3] | [0, 7, 2, 2, 0] | [-130, -132, 60, 2, 0] | [0, 1, 3, 8, 0]␣
→˓ | [-34, 2, -16, 2, 0] | 1080 | 18360 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [2, 16, 16] | [2, 3, 3] | [0, 7, 2, 5, 0] | [-134, -138, 54, 2, 0] | [0, 1, 3, 17,␣
→˓0] | [-70, 2, -34, 2, 0] | 2016 | 36288 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [2, 16, 16] | [2, 3, 3] | [0, 7, 2, 5, 0] | [-134, -138, 54, 2, 0] | [0, 1, 3, 17,␣
→˓0] | [-70, 2, -34, 2, 0] | 2016 | 36288 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [2, 16, 16] | [2, 3, 3] | [0, 7, 2, 5, 0] | [-134, -138, 54, 2, 0] | [0, 1, 3, 17,␣
→˓0] | [-70, 2, -34, 2, 0] | 2016 | 36288 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [2, 16, 16] | [4, 3, 3] | [0, 15, 2, 5, 0] | [-130, -138, 54, 2, 0] | [0, 3, 3, 17,␣
→˓0] | [-142, 2, -34, 2, 0] | 2016 | 18144 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [4, 8, 8] | [4, 3, 3] | [0, 15, 2, 11, 0] | [-138, -150, 42, 2, 0] | [0, 3, 3, 35,␣
→˓0] | [-286, 2, -70, 2, 0] | 3456 | 34560 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [4, 8, 8] | [4, 3, 3] | [0, 15, 2, 11, 0] | [-138, -150, 42, 2, 0] | [0, 3, 3, 35,␣
→˓0] | [-286, 2, -70, 2, 0] | 3456 | 34560 |
+-------------+-----------+-------------------+------------------------+-----------------

(continues on next page)
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→˓-+------------------------+-----------+-----------------------+
| [4, 8, 8] | [4, 3, 3] | [0, 15, 2, 11, 0] | [-138, -150, 42, 2, 0] | [0, 3, 3, 35,␣
→˓0] | [-286, 2, -70, 2, 0] | 3456 | 34560 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [4, 8, 8] | [8, 3, 3] | [0, 31, 2, 11, 0] | [-130, -150, 42, 2, 0] | [0, 7, 3, 35,␣
→˓0] | [-574, 2, -70, 2, 0] | 3456 | 17280 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [8, 4, 4] | [8, 3, 3] | [0, 31, 2, 23, 0] | [-146, -174, 18, 2, 0] | [0, 7, 3, 71,␣
→˓0] | [-1150, 2, -142, 2, 0] | 4608 | 27648 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [8, 4, 4] | [8, 3, 3] | [0, 31, 2, 23, 0] | [-146, -174, 18, 2, 0] | [0, 7, 3, 71,␣
→˓0] | [-1150, 2, -142, 2, 0] | 4608 | 27648 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
| [8, 4, 4] | [8, 3, 3] | [0, 31, 2, 23, 0] | [-146, -174, 18, 2, 0] | [0, 7, 3, 71,␣
→˓0] | [-1150, 2, -142, 2, 0] | 4608 | 27648 |
+-------------+-----------+-------------------+------------------------+-----------------
→˓-+------------------------+-----------+-----------------------+
Total countdown: 532872
Exporting conv1.0.weight to conv1.0.weight.hex
Exporting conv2_x.0.residual_function.0.weight to conv2_x.0.residual_function.0.weight.
→˓hex
Exporting conv2_x.0.residual_function.3.weight to conv2_x.0.residual_function.3.weight.
→˓hex
Exporting conv2_x.1.residual_function.0.weight to conv2_x.1.residual_function.0.weight.
→˓hex
Exporting conv2_x.1.residual_function.3.weight to conv2_x.1.residual_function.3.weight.
→˓hex
Exporting conv3_x.0.residual_function.0.weight to conv3_x.0.residual_function.0.weight.
→˓hex
Exporting conv3_x.0.residual_function.3.weight to conv3_x.0.residual_function.3.weight.
→˓hex
Exporting conv3_x.1.residual_function.0.weight to conv3_x.1.residual_function.0.weight.
→˓hex
Exporting conv3_x.1.residual_function.3.weight to conv3_x.1.residual_function.3.weight.
→˓hex
Exporting conv4_x.0.residual_function.0.weight to conv4_x.0.residual_function.0.weight.
→˓hex
Exporting conv4_x.0.residual_function.3.weight to conv4_x.0.residual_function.3.weight.
→˓hex
Exporting conv4_x.1.residual_function.0.weight to conv4_x.1.residual_function.0.weight.
→˓hex
Exporting conv4_x.1.residual_function.3.weight to conv4_x.1.residual_function.3.weight.
→˓hex
Exporting conv5_x.0.residual_function.0.weight to conv5_x.0.residual_function.0.weight.
→˓hex
Exporting conv5_x.0.residual_function.3.weight to conv5_x.0.residual_function.3.weight.
→˓hex
Exporting conv5_x.1.residual_function.0.weight to conv5_x.1.residual_function.0.weight.

(continues on next page)
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→˓hex
Exporting conv5_x.1.residual_function.3.weight to conv5_x.1.residual_function.3.weight.
→˓hex
Inference finised in 0.0082 seconds
Exporting output to output.hex
Exporting input to input.hex

As you can see, the code generator provides a configuration for each layer of the input model. These values can be
directly used in C/assembly code to program the MVU. The code generator also generates a weight hex file for each
layer that can be used by the simulator to program the MVU rams. Finally, the code generator used the input ONNX
model with OnnxRuntime engine to generate and expected results given a random input vector, both of which are also
saved the generator code so that they can be used for verification purposes.
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SIX

EXAMPLES

6.1 Environment Setup

To run a neural network model using BARVINN, you will need to use 4 different repositories:

• BARVINN. : The top module repo that re-uses pito and MVU project.

• PITO_RISCV. : The barrel RISC-V processor.

• MVU. : The Matrix Vector Unit accelerator.

• MVU_Code_Gen. : A repository that contains python libraries to generate configuration code for MVU.

We have added the last three repositories as a gitmodule to BARVINN repository. Hence, you only need to clone
BARVINN repository as below:

git clone https://github.com/hossein1387/BARVINN
cd BARVINN
git submodule update --init --recursive

As mentioned earlier, BARVINN requires RISC-V GCC that supports RV32I. You can either install RISC-V GCC with
your favorite OS package manager, or you can follow picorv32. project to build a pure RV32I toolchain. The following
are some of the examples that you can run on BARVINN.

6.2 Matrix Multiplication

In this example code, we want to program MVU[0] to perform a matrix multiplication. Note that we do not include
code for transferring data into MVU’s feature map and weight memory. Here we are simply assuming that the data
is in the correct format and layout. The following code performs a matrix multiplication between input feature map
vector of size [1x1x1x64] at 2-bit precision with a weight matrix of size [1x64x64x16] at 2-bit precision. The output
result is written to 0x400 with 2-bit precision. As we mentioned in the design section, the controller (pito) configures
a job by setting the appropriate CSR registers and then kick starts the job by writing into mvucommand CSR register.
Although one can monitor the job status by polling the mvustatus register, MVU will send an interrupt once the job is
done and ready to be read. In the following code block, we first enable global and MVU specific irq (in enable_mvu_irq
function). We then set the address for the MVU irq handler to service the interrupt (in __startup_code__). We then
program a matrix multiply job in mat_mul function. At this point, we can start to prepare and configure the next job,
or we can just wait for an interrupt. For this simple example, we wait for an interrupt from MVU. Finally, if everything
works as expected, we should see OKn in register a1, a2 and a3 and in memory address 0x1000.

#include "pito_def.h"

(continues on next page)

39

https://github.com/hossein1387/Accelerator
https://github.com/hossein1387/pito_riscv
https://github.com/obilaniu/MVU
https://github.com/hossein1387/MVU_Code_Gen
https://github.com/cliffordwolf/picorv32#building-a-pure-rv32i-toolchain


BARVINN

(continued from previous page)

jal sp, enable_mvu_irq
jal sp, __startup_code__
jal sp, mat_mul
jal t3, wait_for_mvu_irq
jal sp, prog_end

// in startup code, we need to set the following:
// -> mtvec addresses
//
__startup_code__:

// addi x1, x0, pito_mtvec_mask
// creating mtvec mask
lui a0, %hi(mvu_irq_handler)
addi a0, a0, %lo(mvu_irq_handler )
csrw mtvec, a0
addi ra, sp, 0
ret

wait_for_mvu_irq:
csrr t0, mcause
srli t0, t0, 31
addi t1, x0, 1
// wait for mcause[31] interrupt to go high
bne t0, t1, wait_for_mvu_irq
addi ra, t3, 0
ret

mvu_irq_handler:
// make sure global interrupt is disabled
csrwi mstatus, 0x0
// first things first, clear mvu intterupts pending bit while processing current irq.
addi t1, x0, 1
slli t1, t1, 16
csrc mip, t1
// do whatever to make MVU happy
addi x0, x0, 0
// we can now start processing incoming interrupts
addi gp, sp, 0
jal sp, enable_mvu_irq
addi ra, gp, 0
mret

enable_mvu_irq:
// make sure global interrupt is enabled
csrwi mstatus, 0x8
// set MVU specific MIE bit aka mie[16]
addi t0, x0, 1
slli t0, t0, 16
csrw mie, t0
addi ra, sp, 0
ret

(continues on next page)
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disable_mvu_irq:
// clear MVU specific MIE bit
addi t0, x0, 1
slli t0, t0, 16
not t0, t0
csrw mie, t0
addi ra, sp, 0
ret

clear_mvu_pending_irq:
csrrci x0, mip, 0
ret

mat_mul:
addi t1, x0, 0
addi t2, x0, 2
add t1, t1, t2 // set weight precision to 2
slli t3, t2, 6 // set input precision to 2
add t1, t1, t3
slli t3, t2, 12 // set output precision to 2
add t1, t1, t3
csrw mvuprecision, t1

csrwi mvuquant , 10 // set quant_msbidx to 10
csrwi mvuwbaseptr , 0 // set weight address to 0
csrwi mvuibaseptr , 0 // set input address to 0

addi t1, x0, 1
slli t1, t1, 10 // set output address to 0x400
csrw mvuobaseptr , t1

csrwi mvuwjump_0, 30 // 1 tile back move x 2 bits
csrwi mvuwjump_1, 2 // 1 tile ahead move x 2 bits
csrwi mvuwjump_2, 0
csrwi mvuwjump_3, 0
csrwi mvuwjump_4, 0
csrwi mvuijump_0, 30 // 1 tile back move x 2 bits
csrwi mvuijump_1, 0
csrwi mvuijump_2, 0
csrwi mvuijump_3, 0
csrwi mvuijump_4, 0
csrwi mvusjump_0, 0
csrwi mvusjump_1, 0
csrwi mvubjump_0, 0
csrwi mvubjump_1, 0
csrwi mvuojump_0, 0
csrwi mvuojump_1, 0
csrwi mvuojump_2, 0
csrwi mvuojump_3, 0
csrwi mvuojump_4, 0
csrwi mvuwlength_1 , 1 // 2 tiles in width

(continues on next page)
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csrwi mvuwlength_2 , 3 // number bit combinations i.e. 2x2 bits
csrwi mvuwlength_3 , 1 // 2 tiles in height
csrwi mvuwlength_4 , 0
csrwi mvuilength_1 , 1 // 2 tiles in height
csrwi mvuilength_2 , 0 // number bit combinations
csrwi mvuilength_3 , 0 // 2 tiles in width of matrix operand
csrwi mvuilength_4 , 0
csrwi mvuolength_1 , 1
csrwi mvuolength_2 , 0
csrwi mvuolength_3 , 0
csrwi mvuolength_4 , 0

addi t1, x0, 1
slli t1, t1, 30 // mul mode 01
addi t1, t1, 16
csrw mvucommand, t1 // Kick start MVU, 2 tiles x 2 tiles x 2bit x 2bits
addi ra, sp, 0
ret

// Done with our awesome program!
prog_end:

lui a0,0x1000>>12
addi a1,zero,'O'
addi a2,zero,'K'
addi a3,zero,'\n'
sw a1,0(a0)
sw a2,0(a0)
sw a3,0(a0)
ebreak

To run the code on BARVINN, we will first need to compile the above code. This source code is provided in BARVINN’s
csrc directory. You can compile the code using the following instructions:

cd matmul
make matmul.hex

This will generate a hex file that should be loaded into BARVINN. Now to run th program on BARVINN, you should
follow these steps:

First make sure Vivado is in the PATH:

source /opt/Xilinx/Vivado/2019.1/settings64.sh

Then, assuming FuseSoC is already instlled, if not done already, we need to let FuseSoC know where to find PITO and
MVU repos:

cd BARVINN/MVU
fusesoc library add mvu .
cd ..
cd BARVINN/pito_riscv
fusesoc library add pito .
cd ..
fusesoc library add barvinn .
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The commands above need to be executed once so that FuseSoC registers the BARVINN, PITO and MVU project
correctly. Now that FuseSoC is configured properly, we can run a FuseSoC target for BARVINN (assuming matmul.hex
is in the current directory):

cd ..
fusesoc library add barvinn .
fusesoc run --target=sim barvinn --firmware=matmul.hex

By default, we have set verification/tests/core/core_tester.sv to run. However, one can change this by modifying barvinn
core file . Also, you by default, there are initial simulation values in MVU’s weight and input rams. You can modify
that by using different input and weight files.

6.3 Convolution

In this example code, we want to program MVU[0] to perform a Convolution operation. We will first start with an
ONNX model. Fig. 6.1 shows that the second layer of resnet18 on cifar100 performs a convolution with input size of
[1x64x32x32] with a weight tensor of size [64x64x3x3]. The convolution parameters are illustrated by Netron in Fig.
6.1.

Fig. 6.1: Model used for Convolution example. This image shows that we are using the second conv layer of resnet18
on Cifar100. ONNX model is illustrated using Netron.

The model in ONNX format is not suitable for MVU. As we discussed in previous sections, we have written a code
generator software to take an ONNX model and then provide the user with the proper MVU configuration settings.
For this example, assuming we have saved this simple one layer convolution block as SimpleConv.onnx, we can use the
code generator as below:

1 import logging
2 import argparse
3 from OnnxParser import OnnxParser

(continues on next page)
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4 from Generator import Generator
5 import utils
6
7 def parse_args():
8 parser = argparse.ArgumentParser()
9 parser.add_argument('-x', '--onnx_model', help='input onnx model', required=True)
10 parser.add_argument('--aprec', help='Activation precision', required=False,␣
→˓default=8, type=int)
11 parser.add_argument('--wprec', help='Weight precision', required=False, default=8,
→˓ type=int)
12 parser.add_argument('--oprec', help='Output precision', required=False, default=8,
→˓ type=int)
13 parser.add_argument('--input_shape', help='input shape for ', nargs='*',␣
→˓required=False, default=[3,32,32], type=int)
14 args = parser.parse_args()
15 return vars(args)
16
17 if __name__ == '__main__':
18 args = parse_args()
19 model_path = args['onnx_model']
20 precision = [args['aprec'], args['wprec'], args['oprec']]
21 input_shape = args['input_shape']
22 model = OnnxParser(model_path)
23
24 # model.print_onnx_graph()
25 # model.print_onnx_model()
26 if len(args['input_shape'])>3:
27 print("Expecting an input array of shape: [channels, height, lenghth]")
28 import sys
29 sys.exit()
30 generator = Generator(model, precision, input_shape)
31 generator.generate_mvu_configs()
32 generator.export_weigths()
33 utils.gen_test_vecs(model_path, precision, input_shape)

And then execute the script above as below:

python sample_mvu_code_generator.py -x SimpleConv.onnx --aprec 8 --wprec 8 --oprec 8 --
→˓input_shape 64 32 32

In the command above, we are specifying a 2 bit precision for weights, activation and output result. We are also
specifying the input shape of the model. Here is the output for the command above:

Generated MVU configuration:
+-------------+-----------+------------------+-------------------------+-----------------
→˓-+---------------------+-----------+-----------------------+
| iShape | fShape | ilength | ijump | wlength ␣
→˓ | wjump | countdown | total layer countdown |
+-------------+-----------+------------------+-------------------------+-----------------
→˓-+---------------------+-----------+-----------------------+
| [1, 32, 32] | [1, 3, 3] | [0, 63, 2, 2, 0] | [-528, -528, 240, 8, 0] | [0, 0, 63, 8,␣
→˓0] | [-64, 8, -64, 8, 0] | 17280 | 587520 |

(continues on next page)
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+-------------+-----------+------------------+-------------------------+-----------------
→˓-+---------------------+-----------+-----------------------+
Total countdown: 587520
Exporting conv1.weight to conv1.weight.hex
Inference finised in 0.0030 seconds
Exporting output to output.hex
Exporting input to input.hex

Here is what we generated after executing the command above:

• A Generated MVU configuration table.

• A weight hex file in MSB transposed format conv1.weight.hex

• An input hex file input.hex

• An output hex file output.hex

The generated MVU configurations can be used to write a program to configure MVU csrs. The weight hex file can be
directly used in simulation using $readmemh to write into MVU weight rams. For verification and testing the correct-
ness of our design, we run the model through OnnxRuntime engine to capture the execution time and output results.
However, since OnnxRuntime supports only 8-bit operation, the MVU results might not be the same as OnnxRuntime
so for now we use 8 bit precision on MVU.

#include "pito_def.h"

jal sp, enable_mvu_irq
jal sp, __startup_code__
jal sp, mat_mul
jal t3, wait_for_mvu_irq
jal sp, prog_end

// in startup code, we need to set the following:
// -> mtvec addresses
//
__startup_code__:

// addi x1, x0, pito_mtvec_mask
// creating mtvec mask
lui a0, %hi(mvu_irq_handler)
addi a0, a0, %lo(mvu_irq_handler )
csrw mtvec, a0
addi ra, sp, 0
ret

wait_for_mvu_irq:
csrr t0, mcause
srli t0, t0, 31
addi t1, x0, 1
// wait for mcause[31] interrupt to go high
bne t0, t1, wait_for_mvu_irq
addi ra, t3, 0
ret

mvu_irq_handler:
(continues on next page)
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// make sure global interrupt is disabled
csrwi mstatus, 0x0
// first things first, clear mvu intterupts pending bit while processing current irq.
addi x1, x0, 1
slli x1, x1, 16
csrc mip, x1
// do whatever to make MVU happy
addi x0, x0, 0
// we can now start processing incoming interrupts
addi gp, sp, 0
jal sp, enable_mvu_irq
addi ra, gp, 0
mret

enable_mvu_irq:
// make sure global interrupt is enabled
csrwi mstatus, 0x8
// set MVU specific MIE bit aka mie[16]
addi t0, x0, 1
slli t0, t0, 16
csrw mie, t0
addi ra, sp, 0
ret

disable_mvu_irq:
// clear MVU specific MIE bit
addi t0, x0, 1
slli t0, t0, 16
not t0, t0
csrw mie, t0
addi ra, sp, 0
ret

clear_mvu_pending_irq:
csrrci x0, mip, 0
ret

mat_mul:
addi x1, x0, 0
addi x2, x0, 2
add x1, x1, x2 // set weight precision to 2
slli x3, x2, 6 // set input precision to 2
add x1, x1, x3
slli x3, x2, 12 // set output precision to 2
add x1, x1, x3
csrw mvu_precision, x1

csrwi mvuquant , 10 // set quant_msbidx to 10
csrwi mvuwbaseptr , 0 // set weight address to 0
csrwi mvuibaseptr , 0 // set input address to 0

addi x1, x0, 1

(continues on next page)
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slli x1, x1, 10 // set output address to 0x400
csrw mvuobaseptr , x1

csrwi mvuwjump_0, 30 // 1 tile back move x 2 bits
csrwi mvuwjump_1, 2 // 1 tile ahead move x 2 bits
csrwi mvuwjump_2, 0
csrwi mvuwjump_3, 0
csrwi mvuwjump_4, 0
csrwi mvuijump_0, 30 // 1 tile back move x 2 bits
csrwi mvuijump_1, 0
csrwi mvuijump_2, 0
csrwi mvuijump_3, 0
csrwi mvuijump_4, 0
csrwi mvusjump_0, 0
csrwi mvusjump_1, 0
csrwi mvubjump_0, 0
csrwi mvubjump_1, 0
csrwi mvuojump_0, 0
csrwi mvuojump_1, 0
csrwi mvuojump_2, 0
csrwi mvuojump_3, 0
csrwi mvuojump_4, 0
csrwi mvuwlength_0 , 1 // 2 tiles in width
csrwi mvuwlength_1 , 3 // number bit combinations i.e. 2x2 bits
csrwi mvuwlength_2 , 1 // 2 tiles in height
csrwi mvuwlength_3 , 0
csrwi mvuilength_0 , 1 // 2 tiles in height
csrwi mvuilength_1 , 0 // number bit combinations
csrwi mvuilength_2 , 0 // 2 tiles in width of matrix operand
csrwi mvuilength_3 , 0
csrwi mvuolength_0 , 1
csrwi mvuolength_1 , 0
csrwi mvuolength_2 , 0
csrwi mvuolength_3 , 0

addi x1, x0, 1
slli x1, x1, 30 // mul mode 01
addi x1, x1, 16
csrw mvucommand, x1 // Kick start MVU, 2 tiles x 2 tiles x 2bit x 2bits

ret

// Done with our awesome program!
prog_end:

lui a0,0x10000000>>12
addi a1,zero,'O'
addi a2,zero,'K'
addi a3,zero,'\n'
sw a1,0(a0)
sw a2,0(a0)
sw a3,0(a0)
ebreak
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6.4 Classification

6.5 Segmentation
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